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Noise properties of stochastic processes and entropy production
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Based on a Fokker-Planck description of external Ornstein-Uhlenbeck noise and cross-correlated noise
processes driving a dynamical system we examine the interplay of the properties of noise processes and the
dissipative characteristic of the dynamical system in the steady state entropy production and flux. Our analysis
is illustrated with appropriate examples.
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I. INTRODUCTION

A dynamical system in contact with a reservoir has bee
subject of wide attention in dissipative dynamics and ir
versible thermodynamics. The focal theme lies on the p
sible link between the rate of phase space volume contrac
and the thermodynamically inspired quantities like entro
production, entropy flux, and Onsager coefficients e
@1–11#. While on the other hand it has been argued that
entropy production is related to the intrinsic properties
phase space structure of the dynamical systems through
Lyapunov exponents@6–11#, the traditional wisdom assert
that entropy production in a class of thermostatted Ham
tonian system is defined@3# as the work per unit time~in the
leading order! done on the system by an external constra
under nonequilibrium steady state condition. Recently ba
on a Markovian description of a stochastic process, Dae
and Nicolis @12#, have critically analyzed the two aspec
from the consideration of an information entropy balan
equation.

The object of the present paper is to extend the treatm
to color @13# and cross-correlated noise processes@14,15#
and to search for an appropriate signature of an intrin
interplay between the noise properties of these processes
the dissipative characteristics of the dynamical system in
steady state entropy production and flux. We specifica
consider the overall system to be open, i.e., the noises a
external origin such that they do not, in general, sati
fluctuation-dissipation relations. Whenever possible we
low ourselves to make a fair comparison with the stand
results for closed systems.

The organization of the paper is as follows: In Sec. II w
consider two types of external stationary and Gaussian n
processes, namely, the Ornstein-Uhlenbeck and cr
correlated noise processes in terms of a Fokker-Planck
scription and setup an entropy balance equation to iden
the drift term, which reveals that in addition to dissipati
constant it contains the essential properties of noise
cesses. Section III is devoted to explicit examples to ca
late the entropy production. The paper is concluded in S
IV.
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II. THE NOISE PROCESSES AND ENTROPY
PRODUCTION

A. Fokker-Planck description

1. External Ornstein-Uhlenbeck noise processes

The Langevin equations of motion in phase space for
N-degrees-of-freedom system that is driven by the exte
color noise processh i can be written as

q̇i5
]H

]pi
5pi ,

ṗi52
]H

]qi
2g i pi1h i ,i 51, . . . ,N, ~1!

whereN is the number of degrees of freedom of the syste
g i is the damping constant fori th degree of freedom, and
qi ,pi are the corresponding coordinate and the moment
respectively. While the presence ofg i imparts a dissipative
character in the dynamics, the stochastic forcingh i ensures a
canonical distribution at equilibrium when the fluctuatio
dissipation relation is satisfied.H is Hamiltonian of an ini-
tially the conservative system and is given by

H5(
i 51

N pi
2

2
1V~$qi%,t !. ~2!

The masses of all the degrees of freedom have been s
unity. V($qi%,t) is the potential of the Hamiltonian system

The termh i in Eq. ~1! refers to an external, Gaussia
color noise for thei th degree of freedom and follows the tw
time correlation function

^h i~ t !h i~ t8!&5
Di

0

t i
e2ut2t8u/t i, ~3!

wheret i is the correlation time andDi
0 is the noise strength

The time evolution ofh i can be conveniently expressed
terms of the white noise processz i(t) for the i th component

h i̇52
h i

t i
1

ADi
0

t i
z i , ~4!

^z i~ t !z i~ t8!&52d~ t2t8!,
©2001 The American Physical Society10-1
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^z i&50.

In case there exists no fluctuation-dissipation relation
tweeng i andh i the system described by the Eq.~1! is some-
times termed as thermodynamically open@16#.

Equation ~4! implies thath i can be treated as a pha
space variable on the same footing asqi , pi . Thus the origi-
nal 2N dimensional stochastic system~1,3! now becomes a
3N dimensional Markovian process where Eq.~1! and ~4!
are written in a compact form

Xi̇5Fi~X!1z i ~5!

where

Xi5H qi for i 51, . . . ,N

pi for i 5N11, . . . ,2N

h i for i 52N11, . . . ,3N

Fi5Xi 1N for i 51, . . . ,N,

Fi52
]V~X1 , . . . ,XN!

]Xi
2g iXi1Xi 1N for i 5N

11, . . . ,2N,

Fi52
Xi

t i
1

ADi
0

t i
z i for i 52N11, . . . ,3N,

and

^z i~ t !z i~ t8!&50 for i 51, . . . ,2N

^z i~ t !z i~ t8!&52d~ t2t8! for i 52N11, . . . ,3N. ~6!

The Fokker-Planck equation@13# corresponding to Lange
vin Eq. ~5! can be written as

]P~X,t !

]t
52(

i 51

3N
]

]Xi
~Fi P!1 (

i 52N11

3N

Di

]2P

]Xi
2

, ~7!

whereDi5Di
0/t i

2 .
P(X,t) is the extended phase space probability distri

tion function. The extension is due to the inclusion ofN
noise variables due to the external agency as phase varia
We conclude by pointing out that the above formulation co
tains the thermodynamically closed system as a special
where the internal noise strengthDi

0 is related to dissipation
g i through the relationDi

05g ikT, whereT refers to the equi-
librium temperature of the reservoir.

2. Cross-correlated noise processes

Next we consider a dynamical system driven by both
ditive and multiplicative noise processesh i andz i , respec-
tively. The Langevin equation for this process, in gene
can be written as

Ẋi5Li~$Xi%,t !1gi~Xi !z i1h i i 51, . . . ,N, ~8!
02611
-

-

les.
-
se

-

l,

whereLi contains the dissipative term as well as the exter
applied deterministic force, if any,gi(Xi) is the coupling
between the system and the multiplicative process,z i andh i
are white Gaussian noise processes with the following co
lation between them;

^z i~ t !z j~ t8!&52Di j8 d~ t2t8!d i j ,

^h i~ t !h j~ t8!&52a i j d~ t2t8!d i j ,

^z i~ t !h j~ t8!&5^z i~ t8!h j~ t !&52l i jADi j8 a i j d~ t2t8!d i j ,
~9!

whereDi j8 anda i j correspond to the strength of multiplica
tive and additive noises, respectively,l represents the cros
correlation between them with the limit 0<l<1. The cross
correlation between these noise processes is known to c
symmetry breaking leading to nonequilibrium phase tran
tions @14# in spatially extended systems and generate in
esting ratchet motion@15# in systems with symmetric poten
tial under isothermal condition.

The Fokker-Planck equation corresponding to Lange
Eq. ~8! can be written as

]P~X!

]t
52(

i 51

N
]

]Xi
~Fi P!1(

i 51

N

Di

]2P

]Xi
2

, ~10!

where the drift for thei th componentFi is

Fi5Li~$Xi%,t !1nFDii8
]gi~Xi !

]Xi
gi~Xi !1l i iAa i i Dii8 G

1Dii8
]gi

2~Xi !

]Xi
12l i iAa i i Dii8

]gi~Xi !

]Xi
, ~11!

wheren51 stands for the Stratonovich andn50 for the Ito
convention, respectively. Diffusion coefficientDi within
small noise approximation can be written as

Di5a i i 1Dii8gi
2~Xie!12l i iAa i i Dii8gi~Xie!, ~12!

wheree in Xie refers to the steady state value ofXi , i.e.,Xie
is a solution of

Fi~$Xi%!50 i 51, . . . ,N ~13!

The choice of specific forms of nonlinearity inLi($Xi%,t)
results in typical features of nonequilibrium phase transitio
in model systems. For the present purpose, however, we
tain a general structure for the rest of the treatment.

B. Information entropy production

Information entropyS is formally defined in terms of the
phase space distribution functionP(X,t) through the well-
known relation

S52E dX P~X,t !ln P~X,t !. ~14!
0-2
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The above definition allows us to have an evolution eq
tion for entropy. To this end we observe from Eqs.~10! @or
~7!# and ~14! that

dS

dt
52E dXF2(

i

]

]Xi
~Fi P!1(

i
Di

]2P

]Xi
2G ln P.

~15!

Performing partial integration of the right hand side of t
above Eq.~15! and then dropping boundary terms~since the
probability density tends to zero asuXu→`), one obtains the
following form of information entropy balance:

dS

dt
5E dXP¹X•F1(

i
DiE 1

P S ]P

]Xi
D 2

. ~16!

The first term in Eq.~16! has no definite sign while the
second term is positive definitely, because of positive d
niteness ofDi . Therefore the second one can be identified
the entropy production (Ṡ0) @12#,

Ṡ05(
i

DiE 1

Ps
S ]Ps

]Xi
D 2

dX, ~17!

in the steady state. The subscripts of Ps refers to steady
state. It is therefore evident from Eq.~17! that

Ṡf lux5E dXPs~X!¹X•F5¹X•F̄,

Ṡ052Ṡf lux . ~18!

Note that since we consider the system to be dissipat
¹X•F is negative and thereforeṠ0 turns out to be positive.

C. Influence of external perturbation

It is now interesting to examine the entropy productio
when the dissipative system is thrown away from the ste
state due to an additional weak applied force. To this end
consider the driftF1 due to external force so that the tot
drift F has now two contributions:

F~X!5F0~X!1hF1~X!. ~19!

Whenh50, P5Ps , the deviation ofP from Ps in pres-
ence of nonzero smallh can be explicitly taken into accoun
once we make use of the identity for the diffusion term@12#

]2P

]Xi
2

5
]

]Xi
FP

] ln Ps

]Xi
G1

]

]Xi
FPs

]

]Xi

P

Ps
G . ~20!

When P5Ps the second term in Eq.~20! vanishes. In
presence of additional forcing the Eq.~10! becomes,

]P

]t
52¹X•cP2h¹X•F1P1(

i
Di

]

]Xi
S Ps

]

]Xi

P

Ps
D ,

~21!

wherec is defined as
02611
-

-
s

e,

,
y
e

c5F02(
i

Di

] ln Ps

]Xi
. ~22!

Here we have assumed for simplicity thatDi is not af-
fected by the additional forcing. The leading order influen
is taken into account through the additional drift term in E
~21!.

Under steady state condition (P5Ps) andh50, the sec-
ond and the third terms in Eq.~21! vanish yielding

¹X•cPs50. ~23!

It is immediately apparent thatcPs refers to a currentJ
whereJ5cPs . The steady state condition therefore reduc
to an equilibrium condition (J50) if

c50. ~24!

~In the next section we shall consider two explicit examp
to show thatc50). This suggests a formal relation betwe
F0 andDi as

F05(
i

Di

] ln Ps

]Xi
, ~25!

wherePs may now be referred to as theequilibrium density
function in phase space.F0 contains dissipation constantg.
Depending on the problem it also depends on the correla
time t i of the color noise or on the cross correlationl i i
between the noise processes.

To consider the information entropy balance equation
presence of external forcing we first differentiate Eq.~14!
with respect to time and use Eq.~21!. Following Ref. @12#
one can show that in the new steady state~in presence ofh
Þ0), the entropy production (Ṡh), and the flux (ḊSf lux) like
terms balance each other as follows:

Ṡh52ḊSf lux ~26!

with

Ṡh5(
i , j

Di j E dX PS ]

]Xi
ln

P

PS
D 2

~27!

and

ḊSf lux5h2E dX dP¹X•F11h2E dXS (
i

F1i

] ln PS

]Xi
D dP,

~28!

where we have puthdP5P2Ps .
In the following section we shall work out the specifi

cases to provide explicit expressions for the entropy prod
tion and some related quantities due to external forcing
different kinds of open systems mentioned in the last sect
0-3
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III. APPLICATIONS

A. Entropy production in a system driven by an external color
noise

To illustrate the theory we now consider a damped h
monic oscillator driven by an external, Gaussian Ornste
Uhlenbeck noise,h1. The noise correlation ofh1 is given by
Eq. ~30!.

q̇15p1 ,

ṗ152v0
2q12g1h1 , ~29!

^h1~ t !h1~ t8!&5
D0

t
e2ut2t8u/t, ~30!

wherev0 is the frequency of the oscillator.
To make notation consistent with Eq.~5! we would like to

let X1 , X2, and X3 correspond toq1 , p1, and h1 respec-
tively.

The relevant equations of motion are therefore as follo

Ẋ15F15X2 ,

Ẋ25F252v0
2X12gX21X3 ,

Ẋ35F352
X3

t
1

AD0

t
z3 , ~31!

wherez3 is a d-correlated noise

^z3~ t !z3~ t8!&52d~ t2t8!.

Therefore, for the Langevin Eq.~31! the Fokker-Planck
Eq. ~7! becomes

]P

]t
52X2

]P

]X1
1

]

]X2
~v0

2X11gX22X3!P

1
1

t

]

]X3
~X3P!1

D0

t2

]2P

]X3
2

. ~32!

We now use the following transformation

U5aX11bX21X3 , ~33!

wherea andb are constants to be determined.
Then under steady state condition Eq.~32! reduces to the

following form:

]

]U
~GU !Ps1Ds

]2Ps

]U2
50, ~34!

where

Ds5
D0

t
, ~35!

and
02611
r-
-

s

GU52aX21bv2X11bgX22bX31
X3

t
. ~36!

HereG is again a constant to be determined. Putting E
~33! in Eq. ~36! and comparing the coefficients ofX1 , X2 ,
andX3 we find

Ga52v0
2b, Gb52a1bg,

and

G52b1
1

t
. ~37!

The physically allowed solutions fora, b, and G are as
follows:

a5
1

2 S 2
g

2
1

1

t
2

1

2
Ag224v0

2D ~1g2Ag224v0
2!,

b52
g

2
1

1

t
2

1

2
Ag224v0

2,

and

G5
g

2
1

1

2
Ag224v0

2 . ~38!

Ps , the stationary solution of Eq.~34! is then given by

Ps5Nse
2GU2/2Ds. ~39!

Here Ns is the normalization constant. By virtue of Eq
~39! c corresponding to Eq.~22! is therefore

c5GU2Ds

] ln Ps

]U
50. ~40!

Since cPs defines a current,Ps defines a zero curren
situation or an equilibrium condition. The equilibrium solu
tion Ps from Eq.~39! can now be used to calculate the stea
state entropy production as given by Eq.~17!. We thus have

Ṡ05DsE
2`

` 1

Ps
S ]Ps

]U D 2

dU. ~41!

Explicit evaluation shows

Ṡ05G, ~42!

whereG is given by Eq.~38!. Thus at equilibrium the en-
tropy production is inversely proportional to relaxation tim
of the process.

We now introduce an additional weak forcing in the d
namics. This may achieved by adding a constant exte
force field f c in the dynamics. Eq.~31! then becomes

Ẋ15X2 , ~43!

Ẋ252v0
2X12gX21 f c1X3 ,
0-4
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Ẋ352
X3

t
1

AD0

t
z3 .

Then the nonequilibrium situation~due to additional forc-
ing, F125 f c) corresponding to Eq.~43! is governed by

]P

]t
52X2

]P

]X1
1

]

]X2
~v0

2X11gX22X3!P2
]

]X2
~ f cP!

1
1

t

]

]X3
~X3P!1

D0

t2

]2P

]X3
2

. ~44!

Using the transformation~33! again in Eq.~44! we have

]

]U
~GU !Ps2

]

]U
FuP1Ds

]2Ps

]U2
50, ~45!

Here,G and other constants are given by Eq.~38!. HereFu is

Fu5b fc . ~46!

The now stationary solution of Eq.~45! in presence of
external forcing is now given by,

Ps85N8expS 2
G

2Ds
FU22

2FuU

G G D , ~47!

whereN8 is the normalization constant.
-

ro
s

m

02611
We are now in a position to calculate the steady st
entropy flux (ḊSf lux) due to external forcing (hÞ0) from
Eq. ~28!

ḊSf lux5E dXdP¹•F11E dXS (
i

F1i

d ln Ps

dXi
D dP,

~48!

putting h51.
The components ofF1 in U space can be identified as

F115Fu and ¹U•F150. ~49!

dP5Ps82Ps denotes the deviation from the initial equ
librium state due to external forcing. For normalized pro
ability functionsPs8 andPs the first integral in Eq.~48! van-
ishes. Thus the entropy production at steady state du
weak forcing is given by

Ṡh52ḊSf lux5
G

Ds
E FuUdPdU.

Making use of the definition ofdP and integrating explic-
itly we obtain

Ṡh5
b2f c

2

Ds
. ~50!

PuttingDs from Eq. ~35! andb from Eq. ~38! we obtain
Ṡh5
@424gt1g2t21t2~g224v0

2!22tAg224v0
2~22gt!# f c

2

4D0
~51!
ipa-

r-

la-

n
s a
of
ro-
We now examine specifically the following two limits:
~i! In the Markovian limitt→0 the above expression re

duces to the following form:

Ṡh5
f c

2

D0
~52!

For the closed thermodynamic systemD05gkT that re-
duces the above expression to the standard result for ent
production of irreversible thermodynamics for Brownian o
cillator.

~ii ! Next we consider an interesting limiting casev0→0,
which implies that for a free Brownian particle we have fro
Eqs.~37!

a50, b5
12gt

t
, and G5g,
py
-

Ṡh5
~12gt!2f c

2

D0
. ~53!

The above expression depicts an interplay of the diss
tion constantg of the system and the correlation timet of
the noise in determining the entropy production. Two diffe
ent cases are noteworthy;

~a! gt,1 or t,1/g:
When relaxation time of the system greater than corre

tion time of external noise the entropy productionṠh de-
creases with increase oft until t>1/g.

~b! gt.1 or t.1/g:
The entropy productionṠh increases with increase oft

until t.1/g. It is interesting to note that in the limitgt
51 entropy production is zero. A plot of entropy productio
in the steady state vs correlation time therefore exhibit
minimum ~see Fig. 1!. It is thus apparent that in presence
the nonequilibrium constraint the properties of noise p
0-5
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cesses as well as the dynamic characteristic of the system
important for entropy production.

B. Entropy production in a cross-correlated noise driven
system

We now turn to the second case where a simple diss
tive system is driven by both additive and multiplicativ
noises.

Ẋ152gX12z1X11h1 . ~54!

HereL1 in Eq. ~8! corresponds to2gX1. The correlation
between the noise processes are given by,

FIG. 1. Plot of entropy productionṠh vs correlation timet for
the Eq.~53! usingg51.0, f c51.0, andD051 ~units are arbitrary!.
t

02611
are

a-

^z1~ t !z1~ t8!&52D118 d~ t2t8!,

^h1~ t !h1~ t8!&52a11d~ t2t8!,

^z1~ t !h1~ t8!&5^z1~ t8!h1~ t !&

52l11AD118 a11d~ t2t8!,0<l11<1,

~55!

where l11 denotes the cross correlation between the t
noise processes.

Equation~10! for this system reduces to

]P~X1!

]t
52

]~F1P!

]X1
1D1

]2P

]X1
2

, ~56!

where the drift term is

F152~g12D118 2n!X11~22n!l11AD118 a11 ~57!

and

D15D118 X1e
2 22l11AD118 a11X1e1a11, ~58!

where

X1e5
~22n!l11AD118 a11

g12D118 2n
. ~59!

Making use of steady state value ofX1, i.e., X1e in Eq.
~58! we obtain the following constant diffusion coefficient
the weak noise limit
D15
@a11g

21~22n!D118 a11$~22n!D118 12g22gl11
2 2l11

2 ~22n!D118 %#

G82
, ~60!
-

s-

in

rre-
is

ta-
where

G85g12D118 2n. ~61!

Now the stationary solution of Eq.~56! is given by

Ps5N1e2G8/2D1[X1
2
22(2lX1 /G8)] , ~62!

whereN1 is the normalization constant.
l is given by

l 5~22n!l11AD118 a11. ~63!

Putting Eq.~62! in Eq. ~22! one may show as before tha

c50. ~64!
Thus Ps is an equilibrium probability distribution func
tion.

Using Eq.~62! in Eq. ~17! we obtain the standard expre
sion for entropy production at equilibrium

Ṡ05G8. ~65!

As beforeG8 is a negative divergence of the drift term
Eq. ~61!. Equation~65! carries same message as in Eq.~42!
but for a different system. It is apparent that the cross co
lated diffusion coefficientD118 between the noise processes
as important as the dissipation factorg that determines the
steady state entropy production.

To study the effect of additional weak forcing on the s
tionary system we again add a constant field of forcef e in
the Eq.~54!. Due to the additional forcing (F115 f e) in Eq.
~54! we have
0-6
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Ẋ15gX12z11h11 f e. ~66!

Then the nonequilibrium situation corresponding to E
~66! is given by

]P

]t
5

]G8X1

]X1
2Fc8

]P

]X1
1D1

]2P

]X1
2

, ~67!
te

e
er
e
nd
s
w
e

i,

v.

a

02611
.

where

Fc85 f e1 l . ~68!

Using the stationary solution of Eq.~67! in Eq. ~28! as in
the preceding section we obtain the expression for entr
production in the steady state
Ṡh5
@g21~22n!2D118

212g~22n!D118 # f e
2

@a11g
21~22n!D118 a11$~22n!D112g22gl11

2 2l11
2 ~22n!D118 %#

. ~69!
the
e of
tion
the
in

nd
ises
ce
p-
the
lated
on-
the
m-

s-
One may recover the standard results for a closed sys
by switching off the multiplicative noise (D118 50) and
implementing fluctuation-dissipation relationa115gkT in
Eq. ~69!. We then obtain

Ṡh5
f e

2

a11
5

f e
2

gkT
. ~70!

Equation~69! implies that for finiteD118 entropy produc-
tion is an increasing function of the cross correlation~i.e.,
l11) between the two noise processes.

IV. CONCLUSIONS

In this paper we have examined the role of noise prop
ties of stochastic processes in entropy production und
steady state condition. As specific cases we have consid
Ornstein-Uhlenbeck noise with finite correlation time a
cross-correlated noises driving the dynamical system. Ba
on an information entropy balance equation we have sho
that the entropy production and fluxlike terms not only d
m

r-
a

red

ed
n

-

pend on the dissipative characteristics of the dynamics of
phase space of the dynamical system, particularly, the rat
phase space volume contraction, but also on the correla
time and strength of cross correlation of the noises. Since
steady state entropy production is identified as a drift term
the Fokker-Planck description in the present formalism a
the correlation time or the strength of cross-correlated no
make their presence felt in this term, it is not difficult to tra
the origin of the role of interplay of dissipation and the pro
erties of the noise processes. In view of the fact that
Ornstein-Uhlenbeck noise processes or the cross-corre
noise processes are commonly occurring situations in c
densed matter physics and chemistry, we hope that
present analysis will be useful in irreversible thermodyna
ics in relation to dynamical systems, in general.
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